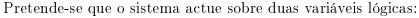


Universidade da Beira Interior

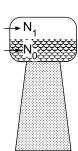
Número: Nome:

Curso: EI (); TSI ()


CURSOS: Engenharia Informática e Tecnologias e Sistemas da Informação

DISCIPLINA: Arquitectura de Computadores I TESTE DE AVALIAÇÃO: Exame (2ª chamada) ANO LECTIVO: 2010/11 DATA: 7/2/2011

- 1. Considere que se pretende um circuito combinacional de controlo de uma Estação Elevatória de Água. O sistema deve controlar o:
 - Nível de Água.
 - A pressão do fornecimento.


Para isso o sistema disponibiliza dois sensores de nível de água, N_1 , N_0 , como representados na figura. Estes sensores geram 1 quando detectam água.

Além disso também há uma variável C que quando a 1 significa que se está perante um consumo elevado, e quando a 0 o nível de consumo é baixo.

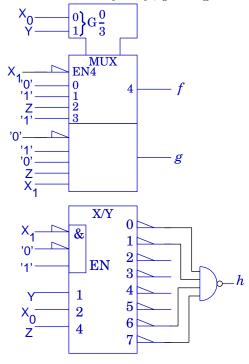
- I Quando o consumo for baixo e a água estiver acima de N_1 deve ser colocada a 1 lógico para desligar o abastecimento de água.
- P Se a água estiver abaixo de N₀, deve ser colocada a 1 lógico para baixar a pressão do fornecimento.

Obtenha uma tabela de verdade representativa do sistema.

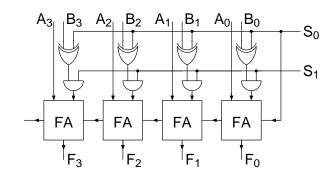
Número: Nome:

- 2. Considere a tabela de verdade ao lado.
 - (a) Obtenha a função f minimizada em termos de algebra de Boole na forma de soma de produtos (simplificação pelos 1's).

(b) Obtenha a função f minimizada em termos de algebra de Boole na forma de produto de somas (simplificação pelos 0's).


	Т	Р	X_1	X_0	f
0	0	0	0	0	1
1	0	0	0	1	0
$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$	0	0	1	0	-
3	0	0	1	1	0
4	0	1	0	0	1
$\begin{bmatrix} 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$	0	1	0	1	0
6	0	1	1	0	-
	0	1	1	1	0
8 9	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	-
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	-
15	1	1	1	1	0

- (c) Será que a função f é igual do ponto de vista lógico? Justifique.
- (d) Obtenha a função f pela primeira fórmula canónica (soma de mintermos).
- (e) Obtenha a função f pela segunda fórmula canónica (produto de maxtermos).


Número:

Nome:

3. Obtenha as funções f, g e h geradas pelos circuitos ('138 e '153).

4. (a) Considere a Unidade Aritmética da figura. Qual o resultado ${\bf F}$ em função de ${\bf A}$ e ${\bf B}$ para as diferentes combinações de S_1 e S_0 .

(b) Obtenha o resultado ${\bf F}$ para ${\bf A}{=}1101$ e ${\bf B}{=}1011$ para as quatro combinações possíveis de S_1 e S_0 .

Número: Nome:

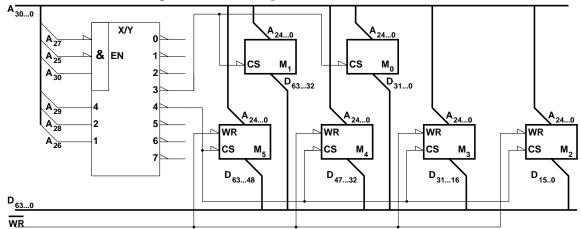
5. (a) Desenhe um circuito com um flip-flop por estado do controlador representado no fluxograma da figura.

Início 0 RDA WRB RD_A WR_a1 $RD_{\beta} WR_{\mathbf{A}}$ $RD_{\alpha} WR_{A}$ $M_1 M_0$ WR_A8 WR₄3 $M_1 M_0$ WR 4 RDA WR Fim Acumulador ·WR_A 0 0 0 Reg. Flags RD_A

A+B

(b) Considerando que o controlador actua sobre a arquitectura estudada nas aulas teóricas, qual a operação executada pelo algoritmo?

(c) Considerando que no início β tem um valor positivo, qual será o valor final de α e β ?


Fs Fz Fov

(d) Existe alguma razão para os estados 1 e 2 não serem simultâneos?

Número:

6. Considere o circuito representado na figura.

Nome:

- (a) Qual a dimensão de cada um dos circuitos de memória representados?
- (b) Porque é que todas as memórias têm saídas terceiro estado?
- (\mathbf{c}) Obtenha os endereços atribuidos a cada um dos circuitos de memória.

Número Neutro	X+0=X	$X \cdot 1 = X$
Número Absorvente	X+1=1	$X \cdot 0 = 0$
Idempotência	X+X=X	$X \cdot X = X$
Complementação	$X+\overline{X}=1$	$X \cdot \overline{X} = 0$
Involução	$\overline{(\overline{\overline{X}})} = X$	

Funções de duas variáveis						
A	В	A·B	A+B	A⊕B	$\overline{A \cdot B}$	$\overline{A+B}$
0	0	0	0	0	1	1
0	1	0	1 1	1 1	1 1	0
1	0	0	1 1	1 1	1	0
1	1	1	1	0	0	0

Comutatividade	X+Y=Y+X
${ m Associatividade}$	(X+Y)+Z=X+(Y+Z)
Distributividade	$X \cdot (Y+Z) = X \cdot Y + X \cdot Z$
Absorção Total	$X+X\cdot Y=X$
Absorção Parcial	$X+\overline{X}\cdot Y=X+Y$
Consenso	$\mid X \cdot Y + \overline{X} \cdot Z + Y \cdot Z = X \cdot Y + \overline{X} \cdot Z$
Teorema de D'Morgan	$\overline{\mathrm{X}{+}\mathrm{Y}}{=}\overline{\mathrm{X}}{\cdot}\overline{\mathrm{Y}}$
	$\overline{X+Y+Z+}=\overline{X}\cdot\overline{Y}\cdot\overline{Z}\cdot$

b = 10		b =	= 2		b = 16	b = 8
0	0	0	0	0	0	0
1	0	0	0	1	1	1
2	0	0	1	0	2	2
3	0	0	1	1	3	3
4	0	1	0	0	4	4
5	0	1	0	1	5	5
6	0	1	1	0	6	6
7	0	1	1	1	7	7
8	1	0	0	0	8	10
9	1	0	0	1	9	11
10	1	0	1	0	A	12
11	1	0	1	1	В	13
12	1	1	0	0	С	14
13	1	1	0	1	D	15
14	1	1	1	0	E	16
15	1	1	1	1	F	17
			α			

15	1 1 1 1	F
Estado	Saída (Î)	α—1D Q—σ
Inter.	$\frac{0}{\gamma}$ M? $\frac{1}{\beta}$	α β
União	α σ γ	α 🖵 γ
Saida	Saída Û	Q _i

Primeira Fórmula Canónica da Algebra de Boole

$$f = \sum_{i=0}^{2^n - 1} f_i \cdot m_i$$

- f_i valor da função f na linha i da tabela de verdade.
- m_i mintermo de ordem i (função lógica que só é 1 na linha i da tabela de verdade).
- \bullet n número de variáveis lógicas independentes.

Segunda Fórmula Canónica da Algebra de Boole

$$f = \prod_{i=0}^{2^{n}-1} (f_i + M_i)$$

- f_i valor da função f na linha i da tabela de verdade.
- M_i maxtermo de ordem i (função lógica que só é 0 na linha i da tabela de verdade).
- \bullet n número de variáveis lógicas independentes.